Quantum Computing & Sensing

CIPHER’s Quantum Systems Division (QSD) investigates quantum computing systems based on individual trapped atomic ions and novel quantum sensor devices based on atomic systems. QSD has designed, fabricated, and demonstrated a number of ion traps and state-of-the-art components to support integrated quantum information systems. Current efforts focus on implementing small quantum algorithms in these devices with the goal of better understanding the effects of noise on fidelity of the algorithms. Additional topics of investigation include chip-scale atomic magnetometers, atomic clocks, cold-atom gyroscopes, and quantum-secured communications.

Publications
 

transport enabled entangling gate for trapped ions graphic   Transport-Enabled Entangling Gate for Trapped Ions
   H.N. Tinkey, C.R. Clark, B.C. Sawyer, and K.R. Brown
   Phys. Rev. Lett. 128, 050502 (2022)


 



second scale spin coherence in a Compact Penning Trap graphic  Second-Scale 9Be+ Spin Coherence in a Compact Penning Trap
   B. J. McMahon and B.C. Sawyer
   Phys. Rev. Applied 17, 014005 (2022)

 

 

  

   High-fidelity Bell-state preparation with 40Ca+ optical qubitsQCS figure 1 
   C.Clark, H.N. Tinkey, B.C. Sawyer, A.M. Meier, K.A. Burkhardt, C.M. Seck, C.M. Shappert,
   N.D. Guise, C.E. Volin, S.D. Fallek, H.T. Hayden, W.G. Rellergert, K.R. Brown, 
   Phys. Rev. Lett. 127, 130505 (2021)


 

   Quantum Process Tomography of a Mølmer-Sørensen Gate via a Global BeamQCS figure 1 
   H. N. Tinkey, A. M. Meier, C. R. Clark, C. M. Seck, and K. R. Brown, 
   Quantum Sci. Technol. 6, 034013 (2021).


 

figure 4    Wavelength-Insensitive, Multispecies Entangling Gate for Group-2 Atomic Ions
    B. C.   Sawyer and K. R. Brown, Phys. Rev. A 103, 022427 (2021).    

 

QCS figure 2
   Bridging Classical and Quantum with SDP Initialized Warm-Starts for QAOA
   R. Tate, M. Farhadi, C. Herold, G. Mohler, and S. Gupta,
   ArXiv:2010.14021 [Quant-  Ph] (2020).  

 

 

qcs figure 3   Single-Ion Addressing via Trap Potential Modulation in Global Optical Fields
   C. M. Seck, A. M. Meier, J. T. Merrill, H. T. Hayden, B. C. Sawyer, C. E. Volin, and
   K. R.  Brown,  New J. Phys. 22, 053024  (2020).   

 

 

 Generating Target Graph Couplings for QAOA from Native Quantum Hardware CouplingsQCS figure 5 
 J. Rajakumar, J. Moondra, S. Gupta, and C. D. Herold, ArXiv:2011.08165 [Physics,   Physics:Quant-Ph] (2020).

 

 

QCS figure 6

  All-Optical Intrinsic Atomic Gradiometer with Sub-20 fT/Hz^0.5 sensitivity in a 22 uT
  Earth-Scale Magnetic Field
 
  A. R. Perry, M. D. Bulatowicz, M. D. Bulatowicz, M. Larsen, T. G. Walker, and R. Wyllie,
  Opt. Express, OE 28, 36696 (2020).

 

qcs figure 7 Doppler-Cooled Ions in a Compact Reconfigurable Penning Trap
 B. J. McMahon, C. Volin, W. G. Rellergert, and B. C. Sawyer, Phys. Rev. A 101, 013408 (2020).

 

 

 

qcs figure 8   Testing the Robustness of Robust Phase Estimation
   A. M. Meier, K. A. Burkhardt, B. J. McMahon, and C. D. Herold, Rev. A 100, 052106 (2019).

 



 

qcs figure 9  Scalable Ion–Photon Quantum Interface Based on Integrated Diffractive Mirrors
  M. Ghadimi, V. Blūms, B. G. Norton, P. M. Fisher, S. C. Connell, J. M. Amini, C. Volin,
  H. Hayden, C.-S. Pai, D. Kielpinski, M. Lobino, and E. W. Streed,
  Npj Quantum Information 3, 4 (2017).

 


 

qcs figure 10Universal Control of Ion Qubits in a Scalable Microfabricated Planar Trap
C. D. Herold, S. D. Fallek, J. T. Merrill, A. M. Meier, K. R. Brown, C. E. Volin, and J. M. Amini, New J. Phys. 18, 023048 (2016).


 


qcs figure 11   Transport Implementation of the Bernstein–Vazirani Algorithm with Ion Qubits
   S. D. Fallek, C. D. Herold, B. J. McMahon, K. M. Maller, K. R. Brown, and J. M. Amini,
   New J. Phys. 18, 083030 (2016).


 

qcs figure 12  Ball-Grid Array Architecture for Microfabricated Ion Traps
  N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown, C. Volin, A. W. Harter, J. M. Amini,
  R. E. Higashi, S. T. Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus, T. R. Ohnstein, and
  D. W. Youngner, Journal of Applied Physics 117, 174901 (2015).



qcs figure 13  Modulating Carrier and Sideband Coupling Strengths in a Standing-Wave Gate Beam
  T. E. deLaubenfels, K. A. Burkhardt, G. Vittorini, J. T. Merrill, K. R. Brown, and J. M. Amini,
  JPhys. Rev. A 92, 061402 (2015).

 

 


qcs figure 14  In-Vacuum Active Electronics for Microfabricated Ion Traps
  N. D. Guise, S. D. Fallek, H. Hayden, C.-S. Pai, C. Volin, K. R. Brown, J. T. Merrill, A. W.
  Harter, J. M. Amini, L. M. Lust, K. Muldoon, D. Carlson, and J. Budach,
  Review of  Scientific Instruments 85, 063101 (2014).

 


 


qcs figure 15    Reliable Transport through a Microfabricated X -Junction Surface-Electrode Ion Trap
    K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. C. Doret, H. Hayden, C-S Pai, D. W.
    Landgren, D. Denison, T. Killian, R. E. Slusher, and A. W. Harter,
    New J. Phys. 15, 033004 (2013).
 

qcs figure 16  Spatially Uniform Single-Qubit Gate Operations with near-Field Microwaves and
  Composite Pulse Compensation

  C. M. Shappert, J. T. Merrill, K. R. Brown, J. M. Amini, C. Volin, S. C. Doret, H. Hayden,
  C.-S. Pai, K. R. Brown, and A. W. Harter,    New J. Phys. 15, 083053 (2013).


qcs figure 17  Controlling Trapping Potentials and Stray Electric Fields in a Microfabricated Ion Trap
  through Design and Compensation

  S. C. Doret, J. M. Amini, K. Wright, C. Volin, T. Killian, A. Ozakin, Douglas Denison,
  H. Hayden, C.-S. Pai, R. E. Slusher, and A. W. Harter, New J. Phys. 14, 073012 (2012).
 


qcs figure 18   Demonstration of Integrated Microscale Optics in Surface-Electrode Ion Traps
   J. T. Merrill, C. Volin, D. Landgren, J. M. Amini, K. Wright, S. C. Doret, C-S Pai, H. Hayden,
   T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher,
   New J. Phys. 13, 103005 (2011).